Long-circulating siRNA nanoparticles for validating Prohibitin1-targeted non-small cell lung cancer treatment.
نویسندگان
چکیده
RNA interference (RNAi) represents a promising strategy for identification and validation of putative therapeutic targets and for treatment of a myriad of important human diseases including cancer. However, the effective systemic in vivo delivery of small interfering RNA (siRNA) to tumors remains a formidable challenge. Using a robust self-assembly strategy, we develop a unique nanoparticle (NP) platform composed of a solid polymer/cationic lipid hybrid core and a lipid-poly(ethylene glycol) (lipid-PEG) shell for systemic siRNA delivery. The new generation lipid-polymer hybrid NPs are small and uniform, and can efficiently encapsulate siRNA and control its sustained release. They exhibit long blood circulation (t1/2 ∼ 8 h), high tumor accumulation, effective gene silencing, and negligible in vivo side effects. With this RNAi NP, we delineate and validate the therapeutic role of Prohibitin1 (PHB1), a target protein that has not been systemically evaluated in vivo due to the lack of specific and effective inhibitors, in treating non-small cell lung cancer (NSCLC) as evidenced by the drastic inhibition of tumor growth upon PHB1 silencing. Human tissue microarray analysis also reveals that high PHB1 tumor expression is associated with poorer overall survival in patients with NSCLC, further suggesting PHB1 as a therapeutic target. We expect this long-circulating RNAi NP platform to be of high interest for validating potential cancer targets in vivo and for the development of new cancer therapies.
منابع مشابه
Identification of a Novel Tumor-Binding Peptide for Lung Cancer Through in-vitro Panning
Tumor-targeted therapies are playing growing roles in cancer research. The exploitation of these powerful therapeutic modalities largely depends on the discovery of tumor-targeting ligands. Phage display has proven a promising high throughput screening tool for the identification of novel specific peptides with high binding affinity to cancer cells. In the present study, we describe the use of ...
متن کاملTargeted gene silencing for cancer treatment
Cancer arises in the twenty-first century as one of the leading causes for mortality in the western civilization. In the last decades, several genes were identified as important players in the transformation of a normal cell into a tumor cell. Therefore, modulation of those genes is a promising strategy for cancer treatment. Gene downregulation can be mediated by small-interfering RNA (siRNA), ...
متن کاملIdentification of a Novel Tumor-Binding Peptide for Lung Cancer Through in-vitro Panning
Tumor-targeted therapies are playing growing roles in cancer research. The exploitation of these powerful therapeutic modalities largely depends on the discovery of tumor-targeting ligands. Phage display has proven a promising high throughput screening tool for the identification of novel specific peptides with high binding affinity to cancer cells. In the present study, we describe the use of ...
متن کاملsiRNA-loaded selenium nanoparticle modified with hyaluronic acid for enhanced hepatocellular carcinoma therapy
Background Small interfering RNA (siRNA) as a new therapeutic modality holds promise for cancer treatment. However, the traditional viral carriers are prone to immunogenicity and risk of insertional mutagenesis. Methods In order to provide a tumor-targeted delivery carrier of siRNA in cancer therapy, the hyaluronic acid (HA)-selenium (Se)-polyethylenimine (PEI) nanoparticle (NP) was fabricate...
متن کاملSmall interfering RNA-based molecular therapy of cancers
RNA interference (RNAi) has become a gold standard for validating gene function in basic life science research and provides a promising therapeutic modality for cancer and other diseases. This mini-review focuses on the potential of small interfering RNAs (siRNAs) in anticancer treatment, including the establishment and screening of cancer-associated siRNA libraries and their applications in an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 25 شماره
صفحات -
تاریخ انتشار 2015